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Learning-induced synchronization of a globally coupled excitable map system

Yoshinori Hayakawa and Yasuji Sawada
Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan

~Received 7 September 1999!

We propose a pulse-coupled neural network model in which one-dimensional excitable maps connected in a
time-delayed network serve as the neural processing units. Although the individual processing unit has simple
dynamical properties, the network exhibits collective chaos in the active states. Introducing a Hebbian learning
algorithm for synaptic connections enhances the synchronization of excitation timing of the units within a
subpopulation. The synchronizing clusters approximately exhibit a power-law size distribution, suggesting a
hierarchy of synchronization. After applying a stationary signal to a subpopulation of the units with learning,
the network then reproduces the signal. The learnable time range is much longer than the inherent time scale
of the processing units, i.e., the synaptic delay time. Also, the network can reproduce periodic signals with time
resolution finer than the delay time. Our present network model can be considered as a temporal association
device which operates in chaotic states.

PACS number~s!: 05.45.Xt, 87.18.Sn
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I. INTRODUCTION

Recent studies aimed at understanding higher b
mechanisms have been more concerned with the dynam
aspects of collective behavior of nerve systems. Several
periments suggest that the timing of neuronal impulses m
play a crucial role in function and information representat
in several regions of the mammalian brain@1–4#. To under-
stand temporal coding processes in the brain by mean
temporal coding, we need to understand several fundame
properties of pulse-coupled networks with a large numbe
neuronal processing elements. Several models of neu
have demonstrated that partial or global synchronization
biological oscillators requires both inhibitory coupling alon
with transmission delay@5#. On the other hand, while learn
ing induced by interactions with the environment must le
to self-organized spiking@6#, we do not understand how syn
aptic plasticity affects spiking patterns. Furthermore, glo
reorganization of spike timing caused by input stimuli is
dispensable for ‘‘binding’’ of information@7#.

One of the essential properties of spiking-neurons is th
excitability, the threshold gating of emitted pulses. To rep
sent this excitability requires at least two degrees of freed
using ordinary differential equations~ODEs! such as the
Fitzhugh-Nagumo equations. On the other hand, a o
dimensional map with a continuous variable can exhibit
citable, oscillatory, and chaotic dynamics with a few para
eters.

Since the subject of our present study is the robust pr
erties of collective neuronal dynamics which are less dep
dent on details of neurons, we do not take biological mod
of action potential for specific nerve cells, such as
Hodgkin-Huxley equations; a one-dimensional map suffi
for the representation of abstract neurons with excitable
namics. Furthermore, simulating the Hodgkin-Huxley eq
tions and the ODEs derived from them is time-consum
@8#. For both numerical and theoretical analysis, a simp
and easier to handle form would aid a large-scale simulat

The integrated-and-fire~IF! models would be another rep
resentation of excitable spiking neurons in simplified form
PRE 611063-651X/2000/61~5!/5091~7!/$15.00
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To represent the excitability and refractoriness, however,
IF model requires internal variables, complicating the
model compared to ours, in which a single element follow
purely one-dimensional dynamics. Therefore, we take a o
dimensional map with excitable dynamics as a model ne
processing unit.

In this paper, we propose a coupled one-dimensional m
connected in an all to all network as an abstract neuro
network with spiking neurons. After constructing the pha
diagram of the global activity of the network for rando
synaptic connection, we show that a Hebbian local learn
rule can induce synchronization of spiking and a synch
nized cluster self-organizes into a characteristic cluster
distribution. We also show that incoming stimuli can contr
very long period bursting of spikes with resolution time fin
than the element’s characteristic time scale.

II. MODEL

We employ a simplified globally coupled network of e
citable neural processing units. To represent neuronal ac
ity x(t) at a discrete timet in a simple manner, we use
one-dimensional iterative mapx(t11)5 f „x(t)… with the
following piecewise linear form@9#:

f ~x!55
0 for x,21

ax for 21<x,0.2

bx20.1 for 0.2<x,0.85

c~x21! for 0.85<x

~1!

where 0,a, c,1, 1,b are constants~Fig. 1!. These param-
eters determine the shape of the pulse. In typical numer
simulations, we choosea50.5, b51.5, and c50.04. For
typical neurons, one iterative step in this model correspo
to milliseconds of time. The absolute magnitude ofx(t) is
arbitrary.

To avoid numerical instability or divergence in larg
scale simulations, we assume thatx resets to zero forx
,21, which happens when the magnitude of inhibition
5091 ©2000 The American Physical Society
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5092 PRE 61YOSHINORI HAYAKAWA AND YASUJI SAWADA
too large. However, this resetting is not essential to our
sults. In most cases, the operation point ofx remains always
above21.

This map has a stable fixed point atxs50 and an unstable
one atxu50.2. If the value ofx exceedsxu , it will ‘‘fire’’ a
single pulse and enter the resting state of the negative
main of x. Otherwise,x approachesxs monotonically. The
weak negative excitation after a single pulse is analogou
the refractory state in the Hodgkin-Huxley model. Th
while it neglects some biological details, our model quali
tively reproduces the behavior of the Hodgkin-Huxley equ
tions.

We considerN excitable maps connected by transmiss
lines with delay timest and synaptic strengthwi j from ele-
ment j to i. The whole dynamics of the system then is

xi~ t11!5 f S xi~ t !1(
j

N

wi j xj~ t2t!1yi~ t !D , ~2!

wherei and j are the indices of the elements, andyi(t) is an
external bias to elementi. All elements (i 51, . . . ,N) update
synchronously following Eq.~2!. For simplicity, we assume
a constant, uniform delayt. We can simulate the dynamic
of a large-scale network much faster than the conventio
Hodgkin-Huxley model or its reduced forms due to the si
plified update rule.

In numerical simulations, we first prepare a set of$xi(t)%
for 2t<t<0 using Gaussian distributed random numb
with a mean of 0.2 and a variance of (0.2)2 as initial condi-
tions. This choice of initial values ensures the initial exci
tion of a large fraction of elements. Otherwise, e.g., start
in the neighborhood ofxs , the whole network eventually
enters a resting state. We set the synaptic weight matrix
ing Gaussian distributed random numbers.

FIG. 1. Piecewise-linear one-dimensional mapf (x). The bullet
is the unstable fixed point which gives the threshold for excitati
and the circle is the stable fixed point.a, b, andc are the slopes in
each segment. Typically,a50.5, b51.5, andc50.04.
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III. CONDITIONS FOR SPONTANEOUS EXCITATIONS

In this section, we consider global network activity
terms of the statistical neuro-mechanics formulated by Am
@10#. We define the activity of the network at timet as

X~ t !5(
i 51

N

xi~ t !. ~3!

Since each element is excitable, the statesxi(t) approximate
binary valued elements, that is, in the resting statexi(t).0
and in the excited state,xi(t).1. We assume the transien
time between these two states is negligibly small.

In a mean field description of the activity of a neur
network with random synaptic weights, if the number of e
ements is large enough, inputs to a neuron behave as a
of independent stochastic variables. When the activity
X(t2t) at time t2t, the inputsV for an element are

V5(
j

N

wi j xj~ t2t!. (
k

X(t2t)

vk , ~4!

wherev is the stochastic variable which represents the d
tribution of weightswi j . Here we limit our consideration to
the zero-bias case. For simplicity, we assume that
weights have a Gaussian distribution of meanm and variance
s2. Thus,V also has a Gaussian distribution of meanmX
and variances2X. We also assume uncorrelated success
values ofxi .

If the slopea near the stable fixed point is small, the tim
scale aroundxs becomes very short, soxi(t).xs at all time
for nonfiring elements. The probability for a nonfiring el
ment to be driven beyond the thresholdx* (5xu) is

Pf~X!5E
x*

`

G~x;mX,sAX!dx, ~5!

whereG(x;m,s) is a Gaussian probability density functio
of meanm and variances2 .

Pf(X) maps activity ofX(t2t) to X(t) as

X~ t !5NPf„X~ t2t!…, ~6!

whereN@1 is the total number of elements. Here we assu
that the delay parameter,t, is larger than the spiking period
of the map and that the correlation between two succes
firing events is negligible. A stable fixed point in Eq.~6! at
0,X* ,N is necessary for sustained spontaneous firing o
finite population of the elements.

This property ofPf(X) yields a saddle-node bifurcatio
line in (m,s) space for a finite value ofX, i.e., the transition
is first order. Numerically, we can evaluate the activityX for
any m ands. Figure 2 shows typical outputs from a sing
element for a fews at fixed m (50). For weak coupling,
i.e., smalls, excitation induced by the initialxi(t<0) does
not last, while elements activate spontaneously above a c
cal value ofs.

Figure 3 shows the phase diagram obtained by direct
merical simulation of Eqs.~1! and ~2! with N540 and the
theoretical transition line obtained from Eq.~6!. Smalla re-
duces the memory effects of the element, and the transi
line obtained from Eq.~6! agrees with the numerical simu

,
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PRE 61 5093LEARNING-INDUCED SYNCHRONIZATION OF A . . .
lations. To account for relaxation nearxs in future work, we
will estimate the probability density function ofxi(t) quan-
titatively. In the following sections, we choose the initi
distribution of synaptic weights near the transition line,
enhance the network’s sensitivity to changes of lear
weights.

IV. DEGREE OF SYNCHRONIZATION

Measuring the activity of elements disregards the corre
tion of firing events. To measure the mutual correlati
among a large population of elements, we need to determ
the degree of synchronization in a simple but general fo
The correlation between the signals of elementsi and j is

ci j 5^@xi~ t !2^xi~ t !&#@xj~ t !2^xj~ t !&#&, ~7!

FIG. 2. Behavior of an element in a fully connected netwo
with random synaptic weights. The standard deviations of the s
aptic weights are~a! s50.05, ~b! s50.1, and~c! s50.2, with
averagem50. The number of elementsN540. Other conditions
are described in the text.

FIG. 3. Phase diagram for random synaptic weights in the
rameter space (m,s) for N5100. Solid curve is the transition line
to global activity derived in the text@Eq. ~6!#. In the gray region, the
network is inactive for the entire initial condition. Circles show t
transition points obtained in simulations witha50.25. 3’s repre-
senta50.33, and squaresa50.5.
d

-

ne
.

where angular brackets denote a time average. Normali
the pair correlations,

r i j 5
ci j

Acii cj j

, ~8!

yields the covariance matrixR5$r i j %. From the definition,
r i j 51 if xi(t) changes synchronously withxj (t), and r i j
50 in the absence of correlation.

SinceR decomposes into the formR5YYT using a matrix
Y ~see the Appendix!, R is positive definite so every eigen
value ofR is real and positive. By normalization, all diagon
elementsr ii 51. Therefore, summation of the eigenvalu
(l i gives the size of the matrix, i.e., the number of elemen
If m correlated elements have no temporal correlation w
other groups, the covariance matrixR has an independen
block of sizem, with corresponding eigenvaluesm ~once!
and zero (m21 times!. The eigenvector corresponding tom
hasm nonzero components, which indicate the locations~in-
dices! of the elements belonging to the group.

Thus the eigenvalues gives the cluster size distribution
mutual synchronization over long periods. We sort the eig
values in descending order, and plot them versus their in
ces in aneigenspectrumof synchronization. In Fig. 4 (e
50), we show an example of the eigenspectrum for a r
domly connected network withN52000.

When$xi(t)% can be represented by a Gaussian stocha
variable which is independent of any signal$xj (t8)% for j
Þ i and att8Þt, we expect the maximum eigenvalue ofR to
be order 1 as described in the Appendix. Thus the probab
that a large cluster of orderN appears could be negligibl
~almost zero probability! in the largeN limit, if the $xi(t)%
are uncorrelated. In other words, a large eigenvalue in
eigenspectrum indicates that a nontrivial collective excitat
mode exists.

n-

-

FIG. 4. Distribution of eigenvalues for the covariance matrixR,
in descending order as a function of rank,i. N52000. For nonzero
learning coefficiente, large eigenvalues emerge: White circles co
nected by solid lines,e50; white triangles with dotted lines,e
50.000 06; and white rectangles with dashed lines,e50.0001. For
all synaptic connectionst511.
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5094 PRE 61YOSHINORI HAYAKAWA AND YASUJI SAWADA
V. REINFORCEMENT OF SYNCHRONIZATION

We now introduce a learning algorithm into our mod
We divide the neural processing units into a number of s
sets $Skuk51, . . . ,M!N%, and impose a time-depende
bias signal$yl(t)% on the visible units belonging toSl ( l
51, . . . ,K,M ), separately. We call the subsets without t
external bias, i.e.,yl(t)50, hidden units.

We set the internal states of every neural unit$xi(t)% to be
random at first, and also set the synaptic weights to
Gaussian random values characterized by (m0 ,s0). While
the external signals are present, we reinforce the syna
weights by a Hebbian rule with time delayt. The amount of
reinforcement from elementj to i is

dwi j ~ t !5exi~ t !xj~ t2t!, ~9!

wheree is a small positive number~the learning coefficient!.
At each step, we update all the synaptic weight synch
nously:

wi j ~ t11!5wi j ~ t !1dwi j ~ t !. ~10!

Since the state variables allow both signs, the learnedwi j can
be either excitatory or inhibitory. Due to the finite delayt,
learning will yield asymmetric weight matrices$wi j Þwji % in
general.

Starting from randomly weighted connections, witho
learning, i.e., in the casee50, the time series$xi(t)% ~see
Fig. 2! has no apparent temporal structure. Accordingly,
power spectrum of$xi(t)% is white. Changing the system
size,N, from 100 to 4000, the largest eigenvaluel1(N) of
the matrixR increases more slowing thanN as shown in Fig.
5~a!, indicating that the time series of randomly connec
elements without learning behave as independent stoch
events.

Without external signals, all elements are hidden w
nonzero learning coefficiente; the timing of spikes self-
organizes starting from random Gaussian synaptic weig
Consequently, in late stages of reinforcement given by
~9!, the eigenspectrum will reflect the emergence of la
clusters. We expect that larger learning coefficients lead
larger size synchronized clusters.

Figure 5~b! shows the dependence of the largest clus
size on the learning coefficient, after 4000 fixed learn
steps. We find a critical value ofe at which a system-wide
cluster emerges. Above the transition, the largest clus
contain almost the same population~around 60–80 %! inde-
pendent ofe. Below the transition, reinforcement of weigh
is ineffective. Near or above the transition point, t
eigenspectrum decays approximately as a power lawlk
;k2b for large eigenvalues, whereb;2 ~Fig. 4!. This scal-
ing holds within our computational limit (N,4000), sug-
gesting the emergence of a hierarchy of synchroniza
clusters during learning in very large-scale networks. M
elements belongs to the largest cluster because of largeb.

In a recent experiment on the cultured network of corti
neurons of a rat, clustering of neuronal activity is observ
using an optical measurement of intracellular Ca21 concen-
tration @11#. By a similar quantitative analysis of synchron
zation for the neurons, Sanoet al. found the emergence o
synchronizing neurons after several days of network grow
.
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In their experiment, there are many synchronizing clust
among the neurons with different cell population. Unfort
nately, statistical properties such as the cluster size distr
tion are not clear so far for the cultured neurons. We may
able to make quantitative comparison to thein vitro experi-
ment in future work.

VI. TEMPORAL LEARNING OF A STATIONARY SIGNAL

Learning causes elements to form synchronously spik
clusters, but the spiking is irregular in time. What happen
we apply external signals to a subpopulation of elemen
We choose1

4 of the elements to be visible.
The external signal is a sine wave of periodTi :

yv~ t !5Asin~2pt/Ti !, ~11!

wherev represents the indices of all visible elements. T
amplitudeA is order 1, typically 0.5. Our numerical simula
tions employTi’s ranging from unity to over ten times th
synaptic delayt.

We set the initial synaptic weights and internal states
randomly distributed Gaussian as was done before
present the external signal during the firstNL time steps. We
call this period thelearning phase. In the recall phase, we
turn off the external signal and set the learning coefficiene
zero. The network continues to produce the time series
tonomously with learned weights. For typical simulation
NL54000 ande51024. We analyze about 105 points of data
during the recall phase.

During learning, there is visible alternate bursting a
resting with periodTi due to the bias signalyv(t). As the

FIG. 5. Maximum eigenvalues,l1, for the covariance matrixR.
~a! System size dependency. Synaptic weights are random Gau
random numbers (m50, s50.1), with t511. The matrixR is cal-
culated from 10 000 steps of numerical simulation at each sys
sizeN. ~b! Learning parametere dependency forN5100 ~circles!
and N51000 ~squares!. Maximum eigenvalues are normalized b
N.
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PRE 61 5095LEARNING-INDUCED SYNCHRONIZATION OF A . . .
reorganization ofwi j proceeds, this bursting and restin
cycle gradually appears in the hidden units as well, while
phase and/or frequency of the cycle may differ from that
the visible elements.

Figure 6~a! shows that, during the recall phase, if th
learning parameters are appropriate, the excitation of
ments persists even without the external bias signal. Rem
able aspects of the time series, which cannot be obse
without the external signalyv(t), include ~i! autonomous
quasiperiodic bursting excitation,~ii ! very long and accurate
intervals between bursts, and~iii ! self-organization of syn-
chronized clusters having different bursting times in the h
den elements. Furthermore, the burst intervalTo found in the
visible elements is close to that of the external signal
posed during learning.

We evaluated the periodicity of bursting by Fourier ana
sis of the time series. The power spectrum shows the bu
ing intervalTo as a lower frequency peak@see Fig. 6~b!#. In
Fig. 7, we plotTo as a function ofTi . In this case, the delay
parametert, which is the longest time scale explicitly a
sumed at the element level, is 11. The period of the rep
duced signal is much longer thant, ranging from 10 to 100
of t, so many units must contribute to the generation of
long-term coherence; excitation pathways must be lo
enough to maintain the coherence over a periodTo@t.

At shorter time scales,Ti andTo are clearly proportiona
with slope close to unity. Therefore, the network can rep
duce the timing of stimuli without special design. The res
lution of the timing of reproduced signals is finer than t
delay timet which we expect to be the ‘‘quantum’’ of tim
ing. In other words, the whole network dynamics produc
the timing, not just the delayed transmission of pulses.

The reproduction of stimuli is robust over a wide range

FIG. 6. ~a! Periodic bursting of a visible element after learning
sinusoidal external signal, and~b! power spectrum of the collective
activity of the visible elements.N540, and 10 elements exper
enced a periodic sinusoidal bias of periodTi550 during the learn-
ing phase of 4000 steps with learning parametere50.0002. Thus,
80 cycles of the signal were presented to the network. For in
synaptic weights,m50, s50.04, andt511.
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parameterse and NL , and the bursting period seems ind
pendent of those parameters. With the pulse rate represe
tion used in conventional neural network models, synap
weights directly affect the characteristic time scale of ne
ronal dynamics. On the contrary, with pulse timing codin
the magnitude of the weights affects less the temporal beh
ior of the network.

VII. COLLECTIVE CHAOS

We use the maximum Lyapunov exponent for the netw
to characterize the degree of temporal disorder of the sig
given by Eqs.~1! and~2! @12#. The time-delayed interaction
prevent analytic calculation, so we first construct anN
3D)-dimensional state vector,

s~ t !5„x1~ t !, . . . ,xN~ t !, x1~ t21!, . . . ,xN~ t21!, . . . ,

x1~ t2D !, . . . ,xN~ t2D !x…, ~12!

where the integerD.0 is large enough that the results a
independent ofD. By solving Eq.~2! from an initial condi-
tions ats0(t), and from a perturbed one ats1(t)5s0(t)1d,
simultaneously, we estimate the maximum Lyapunov ex
nentL:

L5 lim
T→`

1

T
lnS us1~ t1T!2s0~ t1T!u

udu D . ~13!

In the following discussion, we useT.104 and D.100 to
enforce convergence ofL.

Consider the transition to spontaneous firing in the para
eter space (m,s) ~Fig. 3!. Since we expect the transition t
spontaneous activity to be first order, a finite fraction of t
elements change their operational points beyond the unst
fixed pointxs at the transition. Thus the maximum Lyapuno

l

FIG. 7. PeriodTo of learning-induced bursting as a function o
the periodTi of the sinusoidal bias.N540. Ten visible elements are
subject to the sinusoidal bias signal, the rest are hidden elem
The plot shows the status of one visible element after 4000 lear
steps with initial synaptic weights Gaussian random (m50, s
50.04) and delay timet511. The periodicity of the output signa
is evaluated from the peak of the power spectrum for 8192 d
points taken during recall.
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exponent, which describes the most unstable mode, beco
positive discontinuously at the transition as seen in Fig.

In the parameter regime of active states, the dynamic
deterministically chaotic due to the excitable elements. E
when recalling a learned periodic bursting signal, the ma
mum Lyapunov exponent remains positive. Accordingly,
power spectrum of the repetitive bursting has a broad p
around the bursting frequency@Fig. 6~b!#. Numerical simu-
lations show no neutral states, thus we conjecture that alm
everywhere in parameter space active states are chaotic

VIII. DISCUSSION

Our present model and learning algorithm should be a
to learn more complex time sequences. It can recall the
solute time length of input signals without any prior know
edge of the time scale due to the almost linear respons
the bursting period as shown in Fig. 7. On the contra
conventional associative memories can barely control
timing of recalled patterns, i.e., the time scale of the neuro
elements often determines the transition time between
cessive patterns during association@13,14#.

As an example of the learning of more complex signa
Fig. 9 shows the learning and recalling for three differe
periodic signals. For stable learning and recall, we sligh
modified our asymmetric reinforcement rule:

dwi j 5e„xi~ t !2 x̂…u„xj~ t2t!2 x̂…, ~14!

wherex̄ is a constant andu(x) is the Heaviside function. In
Eq. ~14!, we assume that only output signals larger thanx̂
affect the synaptic weights, i.e., only the positive puls
transmit mutual information which may be closer to real sy
apses than Eq.~9!. The qualitative behavior of the networ
under Eq.~14! seems to be the same as that under Eq.~9!,
while avoiding spurious pulse transmission during the res
states by choosingx̄.xu , which makes numerical behavio

FIG. 8. Maximum Lyapunov exponent of the network with ra
dom synaptic weights as the standard deviations of the weight
distribution.m50. At the inactive-active transition, the maximu
Lyapunov number becomes positive discontinuously.N540.
es
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more stable in larger networks. Figure 9 shows that the n
work can recall more than one signal simultaneously w
correct relative phases.

More complex or nonstationary signals seem not to
reproduced as effectively as simple periodic ones. For
stance, complex but periodic signals tend to be recalled
simpler periodic bursting with a typical time period of th
original. On the other hand, when we give short-time no
stationary signals to our network with learning, unexpec
periodic bursting often takes place in the recall phase. Ho
ever, we have no data on the network’s efficiency or capa
for temporal association for general patterns.

Although the dynamics of the present model is determ
istic, timing of the resultant signals is quite irregular due
chaos. The chaotic dynamics of the network may help g
erate timing among different neurons; despite the lack
randomness, synapses experience varied combinations o
put pulse timings, and they can reinforce desirable pulses
Hebbian learning. Thus, hidden elements are driving learn
as a reservoir of timing. Without hidden elements, learn
of long period signals fails in simulations. During the lear
ing of stationary signals, selection of timing occurs even
the hidden elements, and finally periodic bursting is a
seen in hidden elements~see Fig. 9 in its recall phase!. In
this context, the scaling property of synchronization~Sec. V!
may play an important role to generate diversity of timing
the hidden units.

Contrary to the chaotic internal dynamics, after the lea
ing of a periodic signal, bursting with a very precise interv
occurs in the recall phase. This bursting seems to be q
stable against initial perturbations and the bursting inter
holds finer resolution than the characteristic time scale of
units. In other words, the present network is able to acqu
stable dynamics in long time scale using chaos by learni

In our model, the strength of chaos relates directly to
slopeb above the unstable fixed point in the piecewise-line

FIG. 9. Activity of the elements during learning of three sin
soidal signals of different periods. Light shade shows positive
ternal states, and dark shadow negative. Only the first 480 step
learning and recall are plotted.N5160 with 60 visible elements
From the top of the plot, the first 20 elements have sinusoidal b
of a period of 100 during learning~black bar!, the second 20 have a
period of 50~gray bar!, and the third 20 have a period of 100/
~light gray bar!, respectively. The synaptic delayt is randomly
distributed with mean 20 and variance 10. Learning algorithm f

lows Eq.~14!, e50.0001 andx̂50.2.
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mapf. As long asN is large, at any moment multiple excite
elements contribute lnubu to the Lyapunov exponent. Thus
when the average activity of the network isX.0, from the
definition, the maximum Lyapunov exponent is appro
mately

L.
X

N
lnubu, ~15!

where we assume that the elements stay on the uns
branch of the map with probabilityX/N on average. Numeri-
cal simulations agree with Eq.~15!. The slopeb may affect
the dynamical complexity of our model, but the depende
is beyond our present scope.

Finally, we compare our model to the integrate and fi
~IF! model. In the IF model, the membrane potentialVi fol-
lows the equation.

dVi

dt
52Vi1I i , ~16!

where I i is the synapse current into the neuron. WhenVi
exceeds a threshold valueV* , depolarization takes place pro
ducing a single spike. Then,Vi resets to a constant during
finite refractory period. Although the IF model seems simp
representing the excitability and refractoriness requires
den variables, complicating the IR model compared to o
in which a single element follows a purely one-dimensio
dynamics. Tuning the slopesb andc, we can adjust the shap
and timing of the spike to resemble IF behavior. Using
nonlinear functiong, such asg(x)5u(x2 x̂) as in Eq.~14!,
would allow only positive spikes to propagate, as assume
the IF model.
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APPENDIX: MAXIMUM EIGENVALUE OF COVARIANCE
MATRIX FOR RANDOM TIME SERIES

Suppose that everyxi(t) is a Gaussian stochastic variab
independent ofxj (t8) for iÞ j andtÞt8 (1< i , j <N). With-
out loss of generality, we assume that the average of$xi(t)%
is zero and its second moment isV2.

The elements of the covariance matrixR then becomes

r i j 5

(
t50

T

xi~ t !xj~ t !

TV2
, ~A1!

whereT is the averaging time. Note thatxi(t) andxj (t) are
also mutually independent.

From the definition ofR, we can always decomposeR
into R5YYT, whereY5$yi j % is the T3N matrix with ele-
mentyi j 5xi( j )/(T1/2V). We assume that the size of the m
trix N and the averaging timeT are the same order, i.e.,T
5N@1. SinceY and YT have the same eigenvalues a
eigenvectors, the eigenvalues$l i% of R can be represented a
l i5j i

2 using the eigenvalues$j i% of Y.
The density of eigenvalues of a random matrix obeys

‘‘semicircle law’’ @15#. Thus we can expect that the eige
value densityz(j) of the random matrixY is

z~j!5H N1/2

2p
~22j2!1/2, j2,2,

0, j2.2.

~A2!

Using Eq.~A2!, we can obtain the eigenvalue densityr(l)
of R as

r~l!5
1

2l1/2
z~l1/2! ~A3!

for l.0. Therefore, the largest eigenvalue ofR is

l152 ~A4!

in the limit N(;T)→`.
.
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