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Learning-induced synchronization of a globally coupled excitable map system
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We propose a pulse-coupled neural network model in which one-dimensional excitable maps connected in a
time-delayed network serve as the neural processing units. Although the individual processing unit has simple
dynamical properties, the network exhibits collective chaos in the active states. Introducing a Hebbian learning
algorithm for synaptic connections enhances the synchronization of excitation timing of the units within a
subpopulation. The synchronizing clusters approximately exhibit a power-law size distribution, suggesting a
hierarchy of synchronization. After applying a stationary signal to a subpopulation of the units with learning,
the network then reproduces the signal. The learnable time range is much longer than the inherent time scale
of the processing units, i.e., the synaptic delay time. Also, the network can reproduce periodic signals with time
resolution finer than the delay time. Our present network model can be considered as a temporal association
device which operates in chaotic states.

PACS numbds): 05.45.Xt, 87.18.Sn

[. INTRODUCTION To represent the excitability and refractoriness, however, the

. . . . .IF model requires internal variabl mplicating the IR
Recent studies aimed at understanding higher branl'_|IL odel requires interal variables, complicating the

hani h b d with the d - model compared to ours, in which a single element follows a
mechanisms have been more concerned wi € dynamic rely one-dimensional dynamics. Therefore, we take a one-

aspects of collective behavior of nerve systems. Several €Xjimensional map with excitable dynamics as a model neural

periments suggest that the timing of neuronal impulses MaYrocessing unit.

play a crucial role in function and information representation’ | this paper, we propose a coupled one-dimensional map

in several regions of the mammalian brair-4]. To under-  connected in an all to all network as an abstract neuronal

stand temporal coding processes in the brain by means @fetwork with spiking neurons. After constructing the phase

temporal coding, we need to understand several fundamentalagram of the global activity of the network for random

properties of pulse-coupled networks with a large number ogynaptic connection, we show that a Hebbian local learning

neuronal processing elements. Several models of neuromale can induce synchronization of spiking and a synchro-

have demonstrated that partial or global synchronization ohized cluster self-organizes into a characteristic cluster size

biological oscillators requires both inhibitory coupling along distribution. We also show that incoming stimuli can control

with transmission delaf5]. On the other hand, while learn- very long period bursting of spikes with resolution time finer

ing induced by interactions with the environment must leadthan the element’s characteristic time scale.

to self-organized spikinf6], we do not understand how syn-

aptic plasticity affects spiking patterns. Furthermore, global Il. MODEL

reorganization of spike timing caused by input stimuli is in-

dispensable for “binding” of informatiorf7]. . . . .
One of the essential properties of spiking-neurons is theiFItable neural processing u_nlts. T_o represent neuronal activ-

ity x(t) at a discrete timé in a simple manner, we use a

excitability, the threshold gating of emitted pulses. To repre- . . . X . .
sent this excitability requires at least two degrees of freedo ne-d!men'smnal' |ter.at|ve map(t.+ 1)=fx(1) with the
ollowing piecewise linear form9]:

using ordinary differential equation€ODE9 such as the

thzhugh—Nagumo equations_. On the .other hand, a one- 0 forx<—1

dimensional map with a continuous variable can exhibit ex-

citable, oscillatory, and chaotic dynamics with a few param- ax for —1=x<0.2

eters. f(X)=1{ bx—0.1 for0.2<x<0.85 @
_Smce the su.bject of our present study.|s the robust prop- c(x—1) for0.85<x

erties of collective neuronal dynamics which are less depen-

dent on details of neurons, we do not take biological models

of action potential for specific nerve cells, such as thewhere 0<a, c<1, 1<b are constant&ig. 1). These param-

Hodgkin-Huxley equations; a one-dimensional map sufficegters determine the shape of the pulse. In typical numerical

for the representation of abstract neurons with excitable dysimulations, we choosa=0.5,b=1.5, andc=0.04. For

namics. Furthermore, simulating the Hodgkin-Huxley equatypical neurons, one iterative step in this model corresponds

tions and the ODEs derived from them is time-consumingio milliseconds of time. The absolute magnitudex¢f) is

[8]. For both numerical and theoretical analysis, a simple@arbitrary.

and easier to handle form would aid a large-scale simulation. To avoid numerical instability or divergence in large-
The integrated-and-firédF) models would be another rep- scale simulations, we assume thatresets to zero foix

resentation of excitable spiking neurons in simplified forms.<—1, which happens when the magnitude of inhibition is

We employ a simplified globally coupled network of ex-
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flx) I1l. CONDITIONS FOR SPONTANEOUS EXCITATIONS

In this section, we consider global network activity in
terms of the statistical neuro-mechanics formulated by Amari
[10]. We define the activity of the network at timeas

b
N
X(1)= 2, xi(0). 3
/ Since each element is excitable, the statét) approximate
4 a 0.2 - v binary valued elements, that is, in the resting stafé) =0

and in the excited state;(t)=1. We assume the transient
time between these two states is negligibly small.

In a mean field description of the activity of a neural
network with random synaptic weights, if the number of el-
ements is large enough, inputs to a neuron behave as a sum
of independent stochastic variables. When the activity is
X(t—7) at timet— 7, the inputsQ) for an element are

N X(t—17)
FIG. 1. Piecewise-linear one-dimensional nf4g). The bullet Q_; wijXj(t=7)= EK @k “)
is the unstable fixed point which gives the threshold for excitation,
and the circle is the stable fixed poiat.b, andc are the slopes in  wherew is the stochastic variable which represents the dis-
each segment. Typicallp=0.5,b=1.5, andc=0.04. tribution of weightsw;; . Here we limit our consideration to
the zero-bias case. For simplicity, we assume that the

too large. However, this resetting is not essential to our reweights have a Gaussian distribution of mgaand variance
sults. In most cases, the operation poinkeémains always ¢ - Thus,{} also has a Gaussian distribution of meak

above—1. and variancer®X. We also assume uncorrelated successive
This map has a stable fixed poinbat=0 and an unstable Vvalues ofx;. _ o ,
one atx,=0.2. If the value ok exceeds,, it will “fire” a If the slopea near the stable fixed point is small, the time

single pulse and enter the resting state of the negative d§cale arouncs becomes very short, sq(t)=x; at all time
main of x. Otherwise,x approachexs monotonically. The for nonfiring glements. The probability for a n_onflrlng ele-
weak negative excitation after a single pulse is analogous tg1ent to be driven beyond the threshodti(=x,) is
the refractory state in the Hodgkin-Huxley model. Thus .
while it neglects some biological details, our model qualita- pf(x):f G(x; uX,avX)dx, (5)
tively reproduces the behavior of the Hodgkin-Huxley equa- x*
tions.

We consideiN excitable maps connected by transmission
lines with delay timesr and synaptic strengt;; from ele-
mentj to i. The whole dynamics of the system then is

whereG(x; u,0) is a Gaussian probability density function
of meanu and variancer? .
P:(X) maps activity ofX(t—7) to X(t) as

X(t)=NP(X(t—1)), (6)

whereN>1 is the total number of elements. Here we assume
that the delay parameter, is larger than the spiking period
of the map and that the correlation between two successive
firing events is negligible. A stable fixed point in E®) at
wherei andj are the indices of the elements, ant) isan  0<X* <N is necessary for sustained spontaneous firing of a
external bias to elementAll elements (=1, ... N) update finite population of the elements.
synchronously following Eq(2). For simplicity, we assume This property ofP¢(X) yields a saddle-node bifurcation
a constant, uniform delay. We can simulate the dynamics line in (ux,0) space for a finite value of, i.e., the transition
of a large-scale network much faster than the conventionds first order. Numerically, we can evaluate the actiwtjor
Hodgkin-Huxley model or its reduced forms due to the sim-any x and o. Figure 2 shows typical outputs from a single
plified update rule. element for a fewo at fixed u (=0). For weak coupling,

In numerical simulations, we first prepare a sef{xf{t)} i.e., smallo, excitation induced by the initiat;(t<0) does
for —7<t<0 using Gaussian distributed random numbersnot last, while elements activate spontaneously above a criti-
with a mean of 0.2 and a variance of (3s initial condi-  cal value ofo.
tions. This choice of initial values ensures the initial excita- Figure 3 shows the phase diagram obtained by direct nu-
tion of a large fraction of elements. Otherwise, e.g., startingnerical simulation of Eqs(1) and (2) with N=40 and the
in the neighborhood ok, the whole network eventually theoretical transition line obtained from E@). Smalla re-
enters a resting state. We set the synaptic weight matrix ustuces the memory effects of the element, and the transition
ing Gaussian distributed random numbers. line obtained from Eq(6) agrees with the numerical simu-

N
X(t+1)=f| () + 2 wyx(t—nD+y(H) |, (2
J
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FIG. 2. Behavior of an element in a fully connected network

with random synaptic weights. The standard deviations of the syn FIG. 4. Distribution of eigenvalues for the covariance makix
. . ) ) in descending order as a function of rainkiN=2000. For nonzero
aptic weights arga) ¢=0.05, (b) ¢=0.1, and(c) ¢=0.2, with ; g unct z

- . . learning coefficieng, large eigenvalues emerge: White circles con-
aver(;algeM_EOd. .Thti n;Jm::)er of elementy=40. Other conditions nected by solid linese=0; white triangles with dotted liness
are described in the text. =0.000 06; and white rectangles with dashed lires0.0001. For

) ) ) all synaptic connections=11.
lations. To account for relaxation negyin future work, we

will estimate the probability density function &f(t) quan-
titatively. In the following sections, we choose the initial
distribution of synaptic weights near the transition line, to
enhance the network’s sensitivity to changes of learned
weights.

where angular brackets denote a time average. Normalizing
the pair correlations,

Cij

Jeicy;

rij:

®
IV. DEGREE OF SYNCHRONIZATION

Measuring the activity of elements disregards the correla-
tion of firing events. To measure the mutual correlationyields the covariance matriR={r;;}. From the definition,
among a large population of elements, we need to determingj=1 if X(t) changes synchronously witk(t), andr;
the degree of synchronization in a simple but general form=0 in the absence of correlation.
The correlation between the signals of elemérdadj is SinceR decomposes into the forR=Y Y' using a matrix
Y (see the Appendix R is positive definite so every eigen-
value ofRis real and positive. By normalization, all diagonal
¢ij ={[xi (1) = (xi(0) Jx; (1) = {x;(1)) ), @) elementsr; =1. Therefore, summation of the eigenvalues
> \; gives the size of the matrix, i.e., the number of elements.
If m correlated elements have no temporal correlation with
other groups, the covariance matfixhas an independent
block of sizem, with corresponding eigenvalues (once
and zero tn—1 time9. The eigenvector corresponding o

0.07

0.06
Active

0-05 hasm nonzero components, which indicate the locatiGns
0.04 dices of the elements belonging to the group.
o Thus the eigenvalues gives the cluster size distribution for

0.03 mutual synchronization over long periods. We sort the eigen-
values in descending order, and plot them versus their indi-

902 ces in aneigenspectrunof synchronization. In Fig. 4 ¢

g6 =0), we show an example of the eigenspectrum for a ran-
domly connected network witN=2000.

0.00 When{x;(t)} can be represented by a Gaussian stochastic

-0.005 0.000 0.005 0.010 variable which is independent of any sigrad(t’)} for j
H #i and att’ #t, we expect the maximum eigenvaluerfo
FIG. 3. Phase diagram for random synaptic weights in the paP€ order 1 as described in the Appendix. Thus the probability
rameter spacey, o) for N=100. Solid curve is the transition line that a large cluster of orde¥ appears could be negligible
to global activity derived in the teXEq. (6)]. In the gray region, the (@lmost zero probabilityin the largeN limit, if the {x;(t)}
network is inactive for the entire initial condition. Circles show the are uncorrelated. In other words, a large eigenvalue in the
transition points obtained in simulations with=0.25. X’s repre-  eigenspectrum indicates that a nontrivial collective excitation
senta=0.33, and squares=0.5. mode exists.
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V. REINFORCEMENT OF SYNCHRONIZATION 102 @

We now introduce a learning algorithm into our model. -..,,..--'""'"“
We divide the neural processing units into a number of sub- o~
sets{Sk=1,... M<N}, and impose a time-dependent o1 - "
bias signal{y,(t)} on the visible units belonging toS; (I
=1,... K<M), separately. We call the subsets without the : “ -
external bias, i.ey,(t)=0, hidden units )

We set the internal states of every neural §ri(t)} to be 160 .
random at first, and also set the synaptic weights to be 18 ¢ 1
Gaussian random values characterized py,(). While N
the external signals are present, we reinforce the synapti 10
weights by a Hebbian rule with time delay The amount of ® .-
reinforcement from elemeijtto i is 0.8 p—

oW (1) = ex, (1) (t—7), © =z °F
< 0.44 °
wheree is a small positive numbdthelearning coefficient °o°s"
At each step, we update all the synaptic weight synchro- 0. Zbasoscoasocosaasseassoosa®®”
. N=1000
nously: . ‘ . .
_ 10° 107 € 10t 10°

Si h iabl llow both si he | d FIG. 5. Maximum eigenvalues,,, for the covariance matriR.
Ince the state variables allow both signs, the leamggan (a) System size dependency. Synaptic weights are random Gaussian

be either excitatory or inhibitory. Due to the finite delay | 5nqom numbersg=0, o=0.1), with 7= 11. The matrixR is cal-
learning will yield asymmetric weight matric®/;; #Ww;i} in ¢yjated from 10000 steps of numerical simulation at each system
general. sizeN. (b) Learning parametet dependency foN=100 (circles
Starting from randomly weighted connections, withoutand N=1000 (squares Maximum eigenvalues are normalized by
learning, i.e., in the case=0, the time serie§x;(t)} (see N,
Fig. 2 has no apparent temporal structure. Accordingly, the
power spectrum ofx;(t)} is white. Changing the system |In their experiment, there are many synchronizing clusters
size, N, from 100 to 4000, the largest eigenvalug(N) of  among the neurons with different cell population. Unfortu-
the matrixR increases more slowing th&has shown in Fig.  nately, statistical properties such as the cluster size distribu-
5(a), indicating that the time series of randomly connectedtion are not clear so far for the cultured neurons. We may be
elements without learning behave as independent stochastible to make quantitative comparison to thevitro experi-

events. ment in future work.

Without external signals, all elements are hidden with
nonzero learning coefficient; the timing of spikes self- \, teypORAL LEARNING OF A STATIONARY SIGNAL
organizes starting from random Gaussian synaptic weights.
Consequently, in late stages of reinforcement given by Eq. Learning causes elements to form synchronously spiking
(9), the eigenspectrum will reflect the emergence of largeclusters, but the spiking is irregular in time. What happens if
clusters. We expect that larger learning coefficients lead tove apply external signals to a subpopulation of elements?
larger size synchronized clusters. We choose; of the elements to be visible.

Figure 8b) shows the dependence of the largest cluster The external signal is a sine wave of peridd
size on the learning coefficient, after 4000 fixed learning
steps. We find a critical value af at which a system-wide Y, () =Asin(27t/T;), 11
cluster emerges. Above the transition, the largest clusters
contain almost the same populatiGaround 60—80 %inde-  wherev represents the indices of all visible elements. The
pendent ofe. Below the transition, reinforcement of weights amplitudeA is order 1, typically 0.5. Our numerical simula-
is ineffective. Near or above the transition point, thetions employT;'s ranging from unity to over ten times the
eigenspectrum decays approximately as a power Agw synaptic delayr.
~k~# for large eigenvalues, wheg@~ 2 (Fig. 4). This scal- We set the initial synaptic weights and internal states to
ing holds within our computational limitN<4000), sug- randomly distributed Gaussian as was done before and
gesting the emergence of a hierarchy of synchronizatiopresent the external signal during the fixst time steps. We
clusters during learning in very large-scale networks. Mostall this period thdearning phaseln the recall phase we
elements belongs to the largest cluster because of Jarge turn off the external signal and set the learning coefficient

In a recent experiment on the cultured network of corticalzero. The network continues to produce the time series au-
neurons of a rat, clustering of neuronal activity is observedonomously with learned weights. For typical simulations,
using an optical measurement of intracellula®Caoncen- N, =4000 ande=10*. We analyze about 2(oints of data
tration[11]. By a similar quantitative analysis of synchroni- during the recall phase.
zation for the neurons, Saret al. found the emergence of During learning, there is visible alternate bursting and
synchronizing neurons after several days of network growthresting with periodT; due to the bias signal,(t). As the
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FREQUENCY The plot shows the status of one visible element after 4000 learning

steps with initial synaptic weights Gaussian randop=(Q, o
=0.04) and delay time=11. The periodicity of the output signal

is evaluated from the peak of the power spectrum for 8192 data
points taken during recall.

FIG. 6. (a) Periodic bursting of a visible element after learning a
sinusoidal external signal, arfd) power spectrum of the collective
activity of the visible elementdN=40, and 10 elements experi-
enced a periodic sinusoidal bias of peribd=50 during the learn-
ing phase of 4000 steps with learning parameter0.0002. Thus,
80 cycles of the signal were presented to the network. For initia
synaptic weightsu=0, 0=0.04, andr=11.

parameterss and N, , and the bursting period seems inde-
pendent of those parameters. With the pulse rate representa-
tion used in conventional neural network models, synaptic
reorganization ofw;; proceeds, this bursting and resting weights directly affect the characteristic time scale of neu-
cycle gradually appears in the hidden units as well, while theonal dynamics. On the contrary, with pulse timing coding,
phase and/or frequency of the cycle may differ from that ofthe magnitude of the weights affects less the temporal behav-

the visible elements. ior of the network.
Figure Ga) shows that, during the recall phase, if the
learning parameters are appropriate, the excitation of ele- VIl. COLLECTIVE CHAOS

ments persists even without the external bias signal. Remark-

able aspects of the time series, which cannot be observed We use the maximum Lyapunov exponent for the network
without the external signay,(t), include (i) autonomous to characterize the degree of temporal disorder of the signals
quasiperiodic bursting excitatiofij) very long and accurate given by Eqs(1) and(2) [12]. The time-delayed interactions
intervals between bursts, ariii) self-organization of syn- prevent analytic calculation, so we first construct am (
chronized clusters having different bursting times in the hid-<X D)-dimensional state vector,

den elements. Furthermore, the burst intefivafound in the

visible elements is close to that of the external signal im- S(t)=(Xa1(t), ... Xn(t), X(t=1), ... Xn(t=1), ...,

posed during learning.

We evaluated the periodicity of bursting by Fourier analy- X1 (t=D), ... Xn(t=D)X), (12
sis of the time series. The power spectrum shows the burst-
ing interval T, as a lower frequency pedkee Fig. €)]. In
Fig. 7, we plotT, as a function ofT; . In this case, the delay
parameterr, which is the longest time scale explicitly as-
sumed at the element level, is 11. The period of the repro-
duced signal is much longer than ranging from 10 to 100
lc:)fnr, SO many units m.ust cqntrlbute to the generation of the 1 (|8t T) syt T

g-term coherence; excitation pathways must be long A=lim =In
enough to maintain the coherence over a pefliger 7. T |4

At shorter time scalest; and T, are clearly proportional
with slope close to unity. Therefore, the network can reprodn the following discussion, we usg>10* andD>100 to
duce the timing of stimuli without special design. The reso-enforce convergence of.
lution of the timing of reproduced signals is finer than the Consider the transition to spontaneous firing in the param-
delay timer which we expect to be the “quantum” of tim- eter space 4,o) (Fig. 3. Since we expect the transition to
ing. In other words, the whole network dynamics producesspontaneous activity to be first order, a finite fraction of the
the timing, not just the delayed transmission of pulses. elements change their operational points beyond the unstable

The reproduction of stimuli is robust over a wide range offixed pointxg at the transition. Thus the maximum Lyapunov

where the integeD >0 is large enough that the results are
independent oD. By solving Eq.(2) from an initial condi-
tions atsy(t), and from a perturbed one af(t) = sy(t) + 8,
simultaneously, we estimate the maximum Lyapunov expo-
nentA:

(13



5096 YOSHINORI HAYAKAWA AND YASUJI SAWADA

0.2 0 Learning Phase 480 400
1 - s
iRl
0.1 4 SV ¥ e A S e e .E;—
' R G C £ % 3 % s 5l P RN
- Srifis f'f;}*i it Ef:
g o pEitEEitEitelt i
prd b =
@]
g.< ax i
w -0.1 1 3
> e :
0 : Bl
% T = -
Z 021
<
>_
a :
034 160 y
. N=40 '
4 =0 FIG. 9. Activity of the elements during learning of three sinu-
-0. r . . r . . . - . . .
0 0.02 0.04 0.06 0.08 0.10 soidal signals of different periods. nght shade shoyvs positive in-
c ternal states, and dark shadow negative. Only the first 480 steps of
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FIG. 8. Maximum Lyapunov exponent of the network with ran- 4 the top of the plot, the first 20 elements have sinusoidal bias
dom synaptic weights as the standard deviaworf the weight o 5 period of 100 during learnin@lack bay, the second 20 have a
distribution. «=0. At the inactive-active transition, the maximum period of 50(gray bay, and the third 20 have a period of 100/3
Lyapunov number becomes positive discontinuoussly: 40. (light gray bay, respectively. The synaptic delay is randomly

. . distributed with mean 20 and variance 10. Learning algorithm fol-
exponent, which describes the most unstable mode, becomgg,s Eq.(14), e=0.0001 andk=0.2.

positive discontinuously at the transition as seen in Fig. 8.

In the parameter regime of active states, the dynamics igore stable in larger networks. Figure 9 shows that the net-
deterministically chaotic due to the excitable elements. Evejyork can recall more than one signal simultaneously with
when recalling a learned periodic bursting signal, the maXicgrrect relative phases.
mum Lyapunov exponent remains positive. Accordingly, the  More complex or nonstationary signals seem not to be
power spectrum of the repetitive bursting has a broad peajeproduced as effectively as simple periodic ones. For in-
around the bursting frequeng¥ig. 6b)]. Numerical simu-  stance, complex but periodic signals tend to be recalled as a
lations show no neutral states, thus we conjecture that almosimpler periodic bursting with a typical time period of the
everywhere in parameter space active states are chaotic. griginal. On the other hand, when we give short-time non-

stationary signals to our network with learning, unexpected
VIIl. DISCUSSION periodic bursting often takes place in the recall phase. How-
ever, we have no data on the network’s efficiency or capacity

Our present model and learning algorithm should be ablgor temporal association for general patterns.
to learn more complex time sequences. It can recall the ab- Although the dynamics of the present model is determin-
solute time length of input signals without any prior knowl- istic, timing of the resultant signals is quite irregular due to
edge of the time scale due to the almost linear response @haos. The chaotic dynamics of the network may help gen-
the bursting period as shown in Fig. 7. On the contraryerate timing among different neurons; despite the lack of
conventional associative memories can barely control theandomness, synapses experience varied combinations of in-
timing of recalled patterns, i.e., the time scale of the neuronabut pulse timings, and they can reinforce desirable pulses by
elements often determines the transition time between sug4ebbian learning. Thus, hidden elements are driving learning
cessive patterns during associat[d3,14. as a reservoir of timing. Without hidden elements, learning

As an example of the learning of more complex signalsof long period signals fails in simulations. During the learn-
Fig. 9 shows the learning and recalling for three differenting of stationary signals, selection of timing occurs even in
periodic signals. For stable learning and recall, we slightlythe hidden elements, and finally periodic bursting is also

modified our asymmetric reinforcement rule: seen in hidden elementsee Fig. 9 in its recall phaseln
this context, the scaling property of synchronizat{Sec. \}
ow;; = e(x;(t) —f()e(xj(t— 7)—X), (14)  may play an important role to generate diversity of timing in

the hidden units.

—. . - . Contrary to the chaotic internal dynamics, after the learn-
wherex is a constant and(x) is the Heay|3|de funct|on.A|n ing of a periodic signal, bursting with a very precise interval
Eq. (14), we assume that only output signals larger than oceyrs in the recall phase. This bursting seems to be quite
affect the synaptic weights, i.e., only the positive pulsesstaple against initial perturbations and the bursting interval
transmit mutual information which may be closer to real syn-nods finer resolution than the characteristic time scale of the
apses than E¢9). The qualitative behavior of the network ypits. In other words, the present network is able to acquire
under Eq.(14) seems to be the same as that under (BH.  stable dynamics in long time scale using chaos by learning.
while avoiding spurious pulse transmission during the resting |y our model, the strength of chaos relates directly to the
states by choosing=x,, which makes numerical behavior slopeb above the unstable fixed point in the piecewise-linear
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mapf. As long asN is large, at any moment multiple excited APPENDIX: MAXIMUM EIGENVALUE OF COVARIANCE
elements contribute Jb| to the Lyapunov exponent. Thus, MATRIX FOR RANDOM TIME SERIES

when the average activity of the networkXs>0, from the
definition, the maximum Lyapunov exponent is approxi-
mately

Suppose that ever(t) is a Gaussian stochastic variable
independent ok;(t’) fori#j andt#t’ (1<i,j<N). With-
out loss of generality, we assume that the averadex;¢f)}
is zero and its second moment\ié.

X
A= Nln|b|, (15 The elements of the covariance matRxhen becomes
T
where we assume that the elements stay on the unstable 2 X (D)xi(1)
branch of the map with probabilit§/N on average. Numeri- P i(1)X(

cal simulations agree with E@15). The slopeb may affect rij= : (A1)

the dynamical complexity of our model, but the dependence
is beyond our present scope. . L
Finally, we compare our model to the integrate and fireVNereT is the averaging time. Note thai(t) andx;(t) are

IF) model. In the IF model, the membrane potentialfol- also mutually inde.p'endent.
I(ovgs the equation. P ® From the definition ofR, we can always decompose

into R=YY", whereY={y;} is the TXN matrix with ele-
dv, menty;; =x;(j)/(T¥2V). We assume that the size of the ma-
gt - Vit (16)  trix N and the averaging tim& are the same order, i.€T,
=N>1. SinceY and Y' have the same eigenvalues and
where|; is the synapse current into the neuron. Whén  eigenvectors, the eigenvalups} of R can be represented as
exceeds a threshold vali , depolarization takes place pro- \;= & using the eigenvalueis;} of Y.
ducing a single spike. TheW; resets to a constant during a  The density of eigenvalues of a random matrix obeys the
finite refractory period. Although the IF model seems simple,‘semicircle law” [15]. Thus we can expect that the eigen-
representing the excitability and refractoriness requires hidvalue densityz(¢) of the random matrixy is
den variables, complicating the IR model compared to ours
in which a single element follows a purely one-dimensional
dynamics. Tuning the slopésandc, we can adjust the shape 2(8)=
and timing of the spike to resemble IF behavior. Using a

nonlinear functiorg, such agy(x)=6(x—X) as in Eq.(14),

would allow only positive spikes to propagate, as assumed iﬂJsing Eq.(A2), we can obtain the eigenvalue densitfh)
the IF model. of R as

TV?

Nl/z 2\1/2 2
—(2 <2,

0, £2>2.
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